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 High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and 

atomic hydrogen.   One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle 

Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds.  In the 

early days of the space program, other propellants (or so called metapropellants) were suggested, including 

atomic hydrogen and liquid ozone.  Theoretical and experimental studies of atomic hydrogen and ozone were 

conducted beginning in the late 1940s.  This propellant research may have provided screenwriters with the idea 

of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M.  This paper presents analyses 

showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of 

specific impulse values reaching as high as 1,600 s.  A series of single stage and multistage rocket vehicle 

analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar 

missions.   

 

Nomenclature 

 

A  Fixed mass scaling parameter, kg 

A12, A14, A16 Percent of atomic hydrogen in a solid molecular hydrogen matrix 

B  Propellant dependent mass scaling parameter,  kg/ (kg Mp)    

CEV  Crew Exploration Vehicle 

EDS  Earth Departure Stage 

EM-1  Exploration Mission 1 

ESAS  Exploration Systems Architecture Study 

ETO  Earth to orbit 

GLOW  Gross Liftoff Weight 

H  Atomic hydrogen 

H2  Molecular hydrogen 
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HEDM  High-Energy Density Materials 

Isp  Specific impulse (seconds) 

LH2  Liquid Hydrogen 

LO2  Liquid Oxygen  

Mp  Propellant mass 

NACA  National Advisory Committee for Aeronautics (predecessor to NASA) 

NERVA  Nuclear Engine for Rocket Vehicle Applications 

NTP  Nuclear Thermal Propulsion 

NTR  Nuclear Thermal Rocket 

O/F  Oxidizer-to-Fuel ratio 

O2  Oxygen 

O3  Ozone 

PBR  Particle Bed Reactor 

RX-M  Rocketship eXpedition – Moon 

SEI   Space Exploration Initiative 

SF  Science fiction 

T/W  Thrust to Weight ratio 

Wt %  Weight percent 

 

 

 

I. Introduction 

 High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic 

hydrogen.   One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine 

(SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds.  In the early days of the 

space program, other propellants (or so called meta-propellants) were suggested, such as many combinations including 

atomic hydrogen or liquid ozone, or both.  Theoretical and experimental studies of atomic hydrogen and ozone were 

conducted beginning in the late 1940s.  An atomic hydrogen-ozone mixture provides the desired attributes of high 

combustion temperature and low reactant mass.  This research may have provided screenwriters with the idea of an 

atomic hydrogen-ozone rocket engine in the 1950 science fiction (SF) movie, Rocketship X-M (Ref. 1).  This paper 

presents the results of a study which shows that theoretically an atomic hydrogen-ozone rocket engine could produce 

a specific impulse approaching 1,600 s.  The feasibility of such a propulsion system will be discussed.  

 

II. Advanced Propellants 

Advanced propellant and propulsion systems analyses were conducted for very high delta-V lunar 

missions.  The vehicle analyses used the performance assumptions of atomic hydrogen and ozone as the propellants.  

In the mission design, the delta-V for each maneuver was the worst case (highest) value for Earth escape velocity 

and lunar escape velocity.  In other words, the total delta-V was computed assuming that the vehicle left the surface 

of the Earth, attained Earth escape velocity, arrived at the Moon, and landed with a vertical touchdown.  To return to 

Earth, the vehicle once again delivered the delta-V for lunar escape velocity, and landed on the Earth, delivering the 

retro-propulsion delta-V equivalent to Earth escape velocity.  Additional mission analyses were conducted assuming 

that an aerodynamic descent to Earth was used.   The SF inspired vehicle is a two stage design, with Stage 1 being 

left behind on the Moon.  The vehicle design was based in part on the implications of the SF film Rocketship X-M 

(Ref. 1).   

 

 



III. Lunar Mission Planning and Mission delta-V 

Based on the past historical data and information that can be inferred from the 1950 SF film, the mission 

delta-V budget was developed.   Its mission was to send a crew to the moon and return.   The vehicle in the SF film 

used a two stage design.   The initial thrust level of the SF inspired rocket was 2,300 MT (Ref. 1). 

There are two basic mission scenarios that were used.  The first was a round trip mission to the Moon based 

on a brute force approach.  There were four delta-V maneuvers: liftoff from Earth onto an escape trajectory toward 

the Moon, a soft landing on the Moon, ascent from the Moon onto an escape trajectory toward Earth, and finally an 

all propulsive landing on Earth.  The delta-V values in the table include a 20% gravity loss for each maneuver.  The 

delta-V values are noted in Table I.  The total mission delta-V was 32.83 km/s.   

The second mission scenario has the same maneuvers but does not use the all propulsive landing on Earth.  

Upon entering the Earth’s atmosphere, the vehicle would glide to a landing.  The total delta-V for this scenario is 

19.41 km/s. 

 

 

A. Vehicle Design Options and Staging 

In conducting the high energy mission mass estimates, it became clear that the number of stages should be 

investigated.  For extremely high delta-V missions, there is a strong benefit in using multiple stages; a multistage 

vehicle is less massive.  A less massive vehicle often reduces the cost of mission facilities and allows a reduction in 

mission complexity.   In the SF film, the vehicle was to have two stages.  Several options were investigated: 1 stage, 

2 stages, and 6 stages for the very advanced propellants.  

As the vehicle Isp required to perform the 2 stage missions was quite high, a 6 stage lunar vehicle was also 

analyzed.  Such an option very often reduced the overall vehicle GLOW, and also reduced the Isp needed for a very 

high energy mission.  Finally, a single stage vehicle mass was estimated.   While the single stage vehicle will require 

a very high Isp value, the design case was included for comparison.   

Other options considered were related to the planned Nova launch vehicle (Ref. 2).  Here, a total of 4 stages 

were used.  Two stages were used for Earth departure, and one each stage for lunar landing, lunar ascent.  The 

vehicle returns the crew capsule to Earth via a parachute landing.   Additionally, the liftoff mass needed for the 

typical lunar missions planned under the Space Exploration Initiative using STS-C launch vehicles (SEI, from 

1980’s and 1990’s) is also presented (Ref. 3).   

 

B. Propulsion Mass Estimation 

Mass scaling equations were used for the dry mass estimation.   

The mass scaling equation was based on historical methods of propulsion sizing (Refs. 3 and 4): 

Mdry (kg) = A + B Mp  

 



where: 

Mdry  = Propulsion system dry mass including residual propellant (kg) 

Mp  = Usable propellant mass (kg) 

A  = fixed propulsion system mass (kg) 

B  = propellant mass dependent mass (kg/kg Mp) 

 

 

For the advanced propellants, the B parameter was either 0.15 or 0.20.  These values are reasonable for 

advanced chemical propulsion (Ref. 4).  With the SEI based STS-C cases, no additional analyses were 

conducted, and the GLOW of the launch vehicle was taken from the literature (Ref. 5).  For the Nova 

class vehicle, the B parameter was selected based on historical oxygen /hydrogen propulsion system 

sizing (Refs. 3 and 4).   The crew accommodations or the vehicle payload mass of 13.6 MT was selected 

based on past studies (Ref. 6).       

 

IV. Propulsion and Propellant Analyses 

The Isp performance of a wide range of advanced propellant options were estimated.  Figures 1 (Ref. 7) 

and 2 depict the Isp versus mixture ratio of oxygen and atomic hydrogen (H2) and ozone and atomic hydrogen, 

respectively.   In the atomic propellant analyses, several high-energy density atomic propellants with solid particle 

feed systems were considered (Ref. 7).  Analyses of atomic aluminum (Al), atomic boron (B), atomic carbon (C), 

and atomic hydrogen (H) were conducted.   In the analyses, the atomic additives were stored in solid cryogenic H2 

particles with a cryogenic helium liquid as the carrier fluid.  Atomic hydrogen had the highest theoretical 

performance.  As shown in Figure 1, the specific impulse of atomic hydrogen could reach 1,600 s for 100 weight% 

H (Ref. 7).   The analysis includes some bipropellant cases with O2 as the oxidizer.  The best performance was with 

the monopropellant, H.  The energy for the high specific impulse of an atomic hydrogen engine comes from the 

recombination of the hydrogen atoms.  The analyses were performed with the CEA (Chemical Equilibrium with 

Applications) computer code. Refs. 8 and 9).   

Figure 1 presents the specific impulse (Isp) performance for atomic hydrogen with oxygen as the oxidizer 

(Ref. 7).  Figure 2 depicts the Isp performance for atomic hydrogen with ozone (O3) as the oxidizer.  In most cases, 

the engine Isp values were compatible with the very high mission delta-V that is needed.   Appendix A provides a 

wide range of  Isp performance analyses for a wide variety of advanced propellant combinations.  Appendix B 

discusses the history of some of these propellants.   



 

Figure 1. Atomic hydrogen engine performance, no helium diluent added (Palaszewski, B., “Launch Vehicle 

Performance With Solid Particle Feed Systems for Atomic Propellants,” NASA / TM-1998-208498 AIAA-98-3736) 

 

 

 

Figure 2. Ozone and atomic hydrogen engine performance, 100:1 expansion ratio, no helium diluent added 

 



A. GLOW Estimates and Point Design Results 

Based on the information in the SF film, the liftoff thrust of the lunar vehicle was 2,300 MT.  

Using a thrust to weight (T/W) ratio of 1.2, the maximum liftoff mass of the vehicle should be 

approximately 1,900 MT.  This T/W ratio is representative of historical launch vehicles.   

Initial mass estimates of the lunar vehicles began with the using typical advanced propellant Isp 

values.   The initial cases are shown in Figure 3.  Five cases are presented: 2 with the gliding return to 

Earth and 3 with the all-propulsive lunar mission.  A set of Isp combinations for a 2 stage lunar vehicle 

were tested.   For the gliding return to Earth, the two cases differ in the Isp of the second stage: 1,100 and 

1,500 seconds.   Stage 1 used a 522 second Isp value.   The all-propulsive mission design was used in 

three Isp combinations: 1,500 s (Stage 2) and 900 s (Stage 1), 1,500 s (Stage 2) and 1,050 s (Stage 1), and 

1,100 s in both stages.  The option using 1500 seconds in stage 2 and 1050 seconds in stage 1 allowed a 

sufficiently low GLOW to fit into the SF space vehicle GLOW limit of 1900 MT.  Again, these three Isp 

combination were used to guide the vehicle design and find a “best” option for each stage’s Isp value.     

These initial GLOW estimates were used to establish more complete GLOW versus Isp maps for 

each vehicle design.  Initially, the 2 stage vehicle was thought to be sufficient in meeting the all-

propulsive mission design.  However, the Isp needed to fit within the GLOW limit was still quite high.  

Variations in the B parameter of the mass scaling equation and the number of stages were investigated to 

find an improved design with the lowest possible Isp value.    

 

 

Figure 3. Initial point design analyses for advanced propellants with the high energy lunar missions 



B. Parametric GLOW Results 

Multiple options for the advanced propellants allowed the mission designer to find the minimum 

Isp value needed to complete the mission.   Figure 4 compares the GLOW for 2 cases: in the first case, the 

Isp of stage 2 is 1500 s and stage 1 Isp varies.  In the second case, the Isp of each stage is the same.  The 

range of Isp investigated was 1,100 to 1,500 s.   

 

 

 

Figure 4.  GLOW and Isp sensitivity, same dry mass fraction for each stage  

(B = 0.20 for both Stages 1 and 2). 

 

Figure 4 provides a comparison of the GLOW versus Isp for two cases.  The cases are where the 

2 stages have the same Isp.  The other case is where the first stage Isp varies, but the 2nd stage Isp is fixed 

at 1500 s.  For the GLOW limit of 1900 MT, the vehicle Isp of approximately 1,150 (Stage Isp Equal) and 

1,050 seconds (1,500 s Stage 2), respectively.  In each case, the B parameter is 0.2.  The Isp value that 

corresponds to the 1,900 MT GLOW is 1,160 s for the case with the stage Isp values being equal; for the 

1500 s stage 2, the Isp value for the 1,900 MT GLOW was 1,030 s.   

In Figure 5, the influence of the stage dry mass is presented.  There are 2 cases:  B = 0.15 in Stage 

1 and B = 0.20 in Stage 1.  The Isp of Stage 2 is 1,500 s.  By reducing the stage dry mass, the overall 

GLOW of the vehicle can be reduced.  Alternatively, if the GLOW were to remain constant (near the T/W 

based limit of approximately 1,900 MT), the Isp of Stage 1 can be reduced to approximately 920 s.  A 



lower Isp stage can allow the use of a less energetic propellant combination that will be less difficult to 

produce.  

 

 

Figure 5.  GLOW and Isp sensitivity, different dry mass fraction for each stage (0.20 for Stage 2 and 0.15 

for Stage 1) 

 

For extremely high delta-V missions, often many stages reduces the overall mass of the vehicle, 

or for a fixed GLOW, a minimum Isp can be found.   In an effort to find the lowest possible Isp for the 

advanced propellant combination with partial reusability, a simulation was conducted for a 6 stage lunar 

mission.  Two stages were used for the Earth departure; one was used for the lunar landing and one for 

the lunar ascent.  The final 2 stages are used for an all propulsive Earth landing.  Only the final 6th stage 

and the human capsule system lands in the all-propulsive mode upon return to Earth.  In this set of 

analyses, the Isp was the same for every stage 



 

Figure 6.  GLOW and Isp sensitivity, 6 stage vehicle for lunar mission  

(B = 0.20 for all stages). 

.   

The 6 stage option results are shown in Figure 6.  In the high energy propellant cases, the GLOW 

of the vehicle was limited to approximately 1,900 MT.    In this configuration with the GLOW of 1,900 

MT (based on the T/W limit) for the lunar vehicle, the lowest Isp that can allow this mission is 

approximately 900 seconds.  This lower Isp is less challenging than the 1,500 second value noted for 

many of the other cases that were presented.   However, the 900 second Isp value is still far above the 

traditional 450 to 470 second Isp values noted for the currently available O2/H2 propulsion systems.   

For comparison, the GLOW of a single stage vehicle was also assessed.  The 1 stage vehicle 

GLOW is depicted in Figure 7.  To fit within the limit of approximately 1,900 MT, the rocket engine Isp 

value must be approximately 1,680 s.  This Isp value is beyond the predicted capability of the advanced 

propellant combinations discussed in this set of propellant analyses.  This result clearly shows the 

importance of multistage space vehicle design.   

C. Nova Class Vehicles: 

For comparison, a 4 stage lunar mission using chemical O2/H2 propulsion was considered in the 

comparison.  The 4 stage vehicle was used as it was a suggestion in the early Apollo mission planning for 

a brute force lunar mission scenario, using a Nova class rocket.   The 4 stage vehicle used 2 stages to 

inject the payload onto an escape trajectory.  The 3rd stage would softly land the vehicle on the Moon.  



The 4th stage would place the crew capsule onto a lunar escape trajectory toward Earth; the crew capsule 

would land via parachute.    

 

Figure 7.  GLOW and Isp sensitivity, 1 stage vehicle for lunar mission  

(B = 0.20 for all stages). 

 

  

Additional analyses were conducted to compare the RX-M vehicle with a planned lunar mission 

based on the Nova class vehicle concept of the 1960’s.  With the Nova class rocket, the lunar mission 

would lift off from Earth, fly directly to the lunar surface, land softly, and then with a final rocket 

propulsion system, fly directly back to Earth with crew recovery being enabled with a three person 

capsule.  This analyses used a 4 stage vehicle: 2 stages for the earth departure, 1 for the lunar descent, and 

one for the lunar ascent and return to Earth.    Based on historical analyses of Nova, either a 410 s or a 

450 s Isp was planned.  Figure 8 shows the GLOW for 4 cases: 2 with an Isp of 410 s and 2 with an Isp of 

450 s.  For each Isp value, as different stage dry mass parameter, B, was used.  For the 450 second Isp 

cases, the GLOW was 5,040 MT to nearly 7,000 MT.   

D. STS-C GLOW for NASA Lunar Missions 

Figure 9 provides the number of STS-Cargo (STS-C) launch vehicles required for the human lunar 

missions planned for the Space Exploration Initiative (SEI).   The GLOW for a single STS-C was planned 

to be 2,000 MT (Ref. xx).  Thus, the minimum GLOW required for the lunar missions was 8,000 MT (for 

4 launches).   



 

Figure 8.  GLOW and Isp sensitivity, 4 stage Nova class vehicle for lunar mission  

(B = 0.15 or 0.10 for stage 1). 

 

 

Figure 9.  Number of STS-C launches for lunar mission  (Ref. 3). 

 

 



Figure 10 compared the advanced propellants, Nova and SEI (STS-C based) space vehicle 

GLOW values.  The three advanced propellant cases show the lowest Isp value for the mission.   The 

lowest Isp for the advanced propellants was 900 s; here, the vehicle had six stages.  An ozone / atomic 

hydrogen propellant combination or an atomic hydrogen propellant alone may accomplish the all-

propulsive mission design.  The second lowest Isp value was 1,160 s, and this Isp was for the 2 stage 

vehicle, again with the all-propulsive mission design.   Lastly, the single stage vehicle required an Isp 

value of 1,680 s; based on the analyses presented here, none of the advanced propellants that were 

presented can enable this mission design.  The Nova class vehicle with an Isp value of 450 s can perform 

the round trip lunar mission, but not in the all-propulsive mode.  The final stage, once it departs and 

escapes from the lunar gravity, will return to Earth via high energy reentry and finally using a parachute.  

Though the SEI vehicle using four STS-C launches has a different payload delivery mission, and was 

composed on many lunar vehicle components that required on-orbit assembly in LEO, it was presented 

for comparative purposes.      

 

Figure 10.  GLOW and Isp sensitivity, two chemical propellant combinations using O2/H2 and three 

advanced propellant vehicle for lunar mission (with B = 0.20 for all advanced propellant stages). 

 

V. Concluding Remarks 

 The GLOW estimates for a variety of lunar missions with advanced chemical propulsion were 

calculated.  With traditional O2/H2 propulsion, the SEI cases showed a GLOW of 8,000 MT using 4 

STS-C launch vehicles.  This GLOW is exceptionally high, and is driven by the limits of the launch 

vehicle, the large payload delivered to the lunar surface (27 MT, delivered robotically), and many 

components that were delivered to LEO and assembled there for the lunar round trip.   All of the other 



cases used a fixed mass that supported a crew and completed a lunar round trip mission.  The Nova class 

cases used a simplified mission scenario, carrying the crew module to the Moon and them returning it bay 

parachute to Earth.  The advanced high energy fuel cases were designed to use 1, 2 or 6 stages.   These 

analyses showed the potential of using staging to reduce the maximum Isp needed to complete the 

missions.   A 900 second Isp was needed for the 6 stage case.  An Isp value of nearly 1,700 seconds was 

needed for the 1 stage case.   

The GLOW of a series of lunar missions was estimated.   The high energy propulsion vehicles 

were limited to a GLOW of 1,900 MT (based on a T/W of 1.2).  In the comparisons, the lowest Isp to 

meet that GLOW limit was calculated.  For the 1 stage lunar vehicle, the minimum Isp to meet the 

GLOW requirement was about 1680 s.   With the 2 stage vehicle, the minimum Isp was approximately 

1,160 s.  Using the 6 stage vehicle, the minimum Isp was 900 s.  In comparison, for traditional chemical 

O2/H2 propulsion, the configuration of a 4 stage Nova class vehicle required 5,040 MT.   

Overall mission planning should include variations of the number of stages and a variety of 

propulsion technologies.  In the past SF films. The rocket vehicle performance was often misquoted or 

misused as a toll of the screenplay.  In most SF films, the producers never get all of the numbers right.  

However, SF films offer inspiration for new discoveries as humanity makes its way the planets and to the 

stars.   
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Appendix A 

Rocket Specific Impulse, Performance, RX-M Analyses 

 Calculations were completed to determine the rocket engine performance for a range of ozone, atomic hydrogen 

and molecular hydrogen fractions.  This was a way to assess the effect of RXM’s “A” propellant (which, as noted in 

the main text, was assumed to describe the percent of atomic hydrogen in a solid molecular hydrogen matrix).  The 

results of these calculations indicate that the levels of the movie’s “A” propellant (A12, A14, A16) only produce a 

specific impulse of approximately 6.7 km/s (700 s) to 7.8 km/s (800 s). 

 

  NOTE:  All calculations are for oxidizer-to-fuel (O/F) ratios of 0.5 to 5. 

 

  • Ozone and atomic hydrogen (100% H, 00% H2) 

 

  • Ozone and atomic hydrogen (75% H, 25% H2) 

 

  • Ozone and atomic hydrogen (50% H, 50% H2) 

 

  • Ozone and atomic hydrogen (25% H, 75% H2) 

 

  • Ozone and atomic hydrogen (15% H, 85% H2) 

 

  • Ozone and hydrogen (00% H, 100% H2) 

 

 



 

    Figure A-1.  RX-M engine specific impulse as a function of oxidizer-to-fuel ratio 

       for 100% ozone, 100% atomic hydrogen and 0% molecular hydrogen. 

 

 

    

  

   Figure A-2.  RX-M engine specific impulse as a function of oxidizer-to-fuel ratio 

       for 100% ozone, 75% atomic hydrogen and 25% molecular hydrogen. 



 

 

   Figure A-3.  RX-M engine specific impulse as a function of oxidizer-to-fuel ratio 

       for 100% ozone, 50% atomic hydrogen and 50% molecular hydrogen. 

 

 

 

   Figure A-4.  RX-M engine specific impulse as a function of oxidizer-to-fuel ratio 

       for 100% ozone, 25% atomic hydrogen and 75% molecular hydrogen. 



 

 

Figure A-5.  RX-M engine specific impulse as a function of oxidizer-to-fuel ratio for 100% ozone, 15% atomic 

hydrogen and 85% molecular hydrogen. 

  

    

 

Figure A-6.  RX-M engine specific impulse as a function of oxidizer-to-fuel ratio for 100% ozone, 00% atomic 

hydrogen and 100% molecular hydrogen. 

  



Appendix B:  

Propellant Chemistry 

 Fritz Zwicky pioneered “general morphological analysis” in examining types of rocket engines and a range 

of propellants (Biblio. 12, 13, 14).  Beginning in 1943, proposals for what Zwicky termed “meta-chemistry” 

circulated within Aerojet Engineering Corporation.  Zwicky described meta-chemistry as dealing “with the study, 

production and the use of quantum mechanically metastable particles, molecules or states of matter in general”  

More recently, such propellants have been referred to as “HEDM”, high-energy density materials. 

 Zwicky investigated metachemistry propellants in an effort to avoid what he termed the “carbon dilemma” 

of hydrocarbon fuels, i.e., fuels that included carbon in the chemistry were therefore subject to lower specific 

impulses because carbon atoms are heavier than hydrogen atoms and the carbon might not completely combust 

producing CO instead of CO2. (Biblio. 12, 13, 14)  As an example of what could be achieved with metachemistry,  

Zwicky noted that the reaction of monatomic hydrogen with monatomic hydrogen (H + H = H2) liberated 51.9 

kcal/g as compared with 0.63 and 1.51 kcal/g for TNT and nitroglycerine respectively.  Zwicky said that the reaction 

H + H = H2 gave a limiting specific impulse of 21 km/s. (Biblo. 13) 

 Beginning in 1952 with a series of articles in Collier’s magazine, Wernher von Braun and colleagues 

publicized the idea of a crewed lunar vehicle that was over 48 m long and about 33 m wide with a mass of over 3.9 

Mkg (4,370 tons) propelled by a battery of thirty rocket motors providing a total thrust of 3.6 MN (407 tons) of 

thrust (Biblio. 15)  The rocket motors were to use a combination of hydrazine and nitric acid (a combination that 

would later be used with modifications in the Soviet R-16 launch vehicle). 

 Around the same time that monatomic hydrogen was being mentioned as a possible propellant was the idea 

of using ozone as an oxidizer.  Willy Ley described some of the advantages of using ozone as an oxidizer in his 

series of books that began with Rockets in 1944.  Ley wrote that “To all intents and purposes ozone is a kind of 

concentrated oxygen.  It has a higher specific gravity:  a tank that holds 6 pounds of liquid oxygen holds almost 10 

pounds of liquid ozone.  Liquid ozone not only provides more oxygen in a given volume (and for a given tank 

weight), but also has some advantages as to temperature.  The boiling point of liquid oxygen is -183 degrees 

centigrade, that of liquid ozone -119 degrees centigrade” (Biblio. 16).   

 Ley went on to point out that “In addition to higher density and higher boiling point ozone has another 

advantage which is reminiscent of the decomposition of hydrogen peroxide.  The atoms which normally form the 

oxygen molecule can rearrange themselves into ozone molecules only by absorbing energy (719 calories per gram) 

… When ozone is used as an oxidizer for combustion, it reverts to ordinary oxygen, thereby releasing the energy it 

had originally absorbed.  This energy release naturally would show up as a higher exhaust velocity; calculation 

shows that a fuel burned with ozone would produce an exhaust velocity some 10 per cent higher than that produced 

by the same fuel burned with oxygen” (Biblio. 16).   

 Studies of ozone as an oxidizer were more than just speculation in popular books.  In the late 1940s, 

scientists at the Flight Propulsion Research Laboratory of the National Advisory Committee for Aeronautics 

(NACA) (now NASA’s John H. Glenn Research Center at Lewis Field) began studying the theoretical performance 

of some rocket propellants containing hydrogen, nitrogen and oxygen, specifically liquid ozone.  With hydrogen as 

the fuel, liquid ozone gave the highest specific impulse, beating out liquid oxygen and 100-percent hydrogen 

peroxide (Biblio. 17).   

 Researchers at Princeton University investigated various mixtures of liquid ozone in liquid oxygen with 

successful runs being made in the 10% to 15% range.  As the Princeton researchers were aware (and Ley also 

noted), ozone is an unstable compound; in fact, the Princeton researchers “confirmed the highly brisant character” of 

the ozone reactions that occurred during detonation tests (Biblio. 19)  Ozone concentrations approaching 28% were 

explosive.19  NASA researchers found that “Explosions were encountered when equipment or procedure permitted 

ozone to concentrate locally” (Biblio. 20).       



 There have been several papers published on the reaction of hydrogen atoms (including atomic hydrogen) 

with ozone (Biblio. 21-24).  Observed reactions include  (Biblio. 22, 24): 

 

     H  +  O3     OH  +  O2 

 

     H  +  O3      HO2 + O 

 


